初中数学公式定理(初中数学所有公式定理)

一、初中数学公式定理归纳大全

这篇初中数学公式定理归纳大全的文章,是特地为大家整理的,希望对大家有所帮助!

1过两点有且只有一条直线

2两点之间线段最短

3同角或等角的补角相等

4同角或等角的余角相等

5过一点有且只有一条直线和已知直线垂直

6直线外一点与直线上各点连接的所有线段中,垂线段最短

7平行公理经过直线外一点,有且只有一条直线与这条直线平行

8如果两条直线都和第三条直线平行,这两条直线也互相平行

9平行直线的判定:

①同位角相等,两直线平行

②内错角相等,两直线平行

③同旁内角互补,两直线平行

10平行直线的性质:

①两直线平行,同位角相等

②两直线平行,内错角相等

③两直线平行,同旁内角互补

11三角形三边关系:

定理三角形两边的和大于第三边

推论三角形两边的差小于第三边

12三角形内角和定理

三角形三个内角的和等于180°

推论1:直角三角形的两个锐角互余

推论2:三角形的一个外角等于和它不相邻的两个内角的和

推论3:三角形的一个外角大于任何一个和它不相邻的内角

13全等三角形的对应边、对应角相等

14全等三角形的判定

①边边边公理(SSS)有三边对应相等的两个三角形全等

②边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等③角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等④推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

⑤斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 15角平分线的性质定理

角平分线上的点到这个角的两边的距离相等

角平分线的性质定理的逆定理

到一个角的两边的距离相等的点,在这个角的平分线上

16等腰三角形的性质定理

等腰三角形的两个底角相等(即等边对等角)

推论1

等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(三线合一)推论2

等边三角形的各角都相等,并且每一个角都等于60°

17等腰三角形的判定定理

如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)推论1

三个角都相等的三角形是等边三角形(等边三角的判定1)

推论 2

有一个角等于60°的等腰三角形是等边三角形(等边三角形的判定2)

18在直角三角形中,30°角所对的边等于斜边的一半

19直角三角形斜边上的中线等于斜边上的一半

20垂直平分线的性质定理

线段垂直平分线上的点和这条线段两个端点的距离相等

逆定理

到线段两端点距离相等的点,在这条线段的垂直平分线上

21勾股定理

直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2b2c2

勾股定理的逆定理(直角三角形的判定)

如果三角形的三边长a、b、c有满足a2b2c2,那么这个三角形是直角三角形 22定理四边形的内角和等于360°

23四边形的外角和等于360°

24多边形内角和定理

n边形的内角的和等于(n-2)×180°

推论

任意多边的外角和等于360°

25平行四边形的性质

性质定理1:平行四边形的对角相等

性质定理2:平行四边形的对边相等

性质定理3:平行四边形的对角线互相平分

26平行四边形的判定

判定定理1:两组对角分别相等的四边形是平行四边形

判定定理2:两组对边分别相等的四边形是平行四边形

判定定理3:对角线互相平分的四边形是平行四边形

判定定理4:一组对边平行相等的四边形是平行四边形

27矩形的性质定理

性质定理1:矩形的四个角都是直角

性质定理2:矩形的对角线相等

28矩形的判定定理

判定定理1:有三个角是直角的四边形是矩形

判定定理2:对角线相等的平行四边形是矩形

29菱形性质定理

性质定理1菱形的四条边都相等

性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

30菱形面积=对角线乘积的一半,即S

31菱形判定定理

判定定理1:四边都相等的四边形是菱形

判定定理2:对角线互相垂直的平行四边形是菱形

32正方形性质定理

性质定理1:正方形的四个角都是直角,四条边都相等 ab2

性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 33三角形中位线定理

三角形的中位线平行于第三边,并且等于它的一半

34梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l

S11(ab)h梯形的面积=上底下底)高 22ab2

Slh(即面积等于中位线乘以高)

35等腰梯形性质定理

性质定理1:等腰梯形在同一底上的两个角相等

性质定理2:等腰梯形的两条对角线相等

36等腰梯形判定定理

判定定理1:在同一底上的两个角相等的梯形是等腰梯形

判定定理2:对角线相等的梯形是等腰梯形

37比例的基本性质

(1)如果a:bc:d,那么abcd

如果abcd,那么a:bc:d

(2)合比性质a

bc

dabb

m

ncdd如果,那么abc

d acmbdna

b(3)等比性质如果bdn0,那么

38等边三角形的面积:

S42其中a表示边长

39乘法公式:

完全平方公式(ab)a2abb

平方差公式ab(ab)(ab)

40一元二次方程求根公式

x1,2b222222a

b

ac根与系数的关系 x1x2 x1x2ca注:韦达定理

判别式

b4ac

0时方程有两个相等的实根

0时方程有两个不等的实根

0时方程没有实根。

二、初中数学所有公式定理

所有定理,其中大部分是重点的,重点要完全记住,并学会举一反三,但还有一小部分是超出你们初中大纲的,可以选择性记忆,并根据自身的条件去记忆————

1过两点有且只有一条直线

2两点之间线段最短

3同角或等角的补角相等

4同角或等角的余角相等

5过一点有且只有一条直线和已知直线垂直

6直线外一点与直线上各点连接的所有线段中,垂线段最短

7平行公理经过直线外一点,有且只有一条直线与这条直线平行

8如果两条直线都和第三条直线平行,这两条直线也互相平行

9同位角相等,两直线平行

10内错角相等,两直线平行

11同旁内角互补,两直线平行

12两直线平行,同位角相等

13两直线平行,内错角相等

14两直线平行,同旁内角互补

15定理三角形两边的和大于第三边

16推论三角形两边的差小于第三边

17三角形内角和定理三角形三个内角的和等于180°

18推论1直角三角形的两个锐角互余

19推论2三角形的一个外角等于和它不相邻的两个内角的和

20推论3三角形的一个外角大于任何一个和它不相邻的内角

21全等三角形的对应边、对应角相等

22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

23角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

25边边边公理(SSS)有三边对应相等的两个三角形全等

26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

27定理1在角的平分线上的点到这个角的两边的距离相等

28定理2到一个角的两边的距离相同的点,在这个角的平分线上

29角的平分线是到角的两边距离相等的所有点的集合

30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

31推论1等腰三角形顶角的平分线平分底边并且垂直于底边

32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33推论3等边三角形的各角都相等,并且每一个角都等于60°

34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35推论1三个角都相等的三角形是等边三角形

36推论 2有一个角等于60°的等腰三角形是等边三角形

37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38直角三角形斜边上的中线等于斜边上的一半

39定理线段垂直平分线上的点和这条线段两个端点的距离相等�

40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42定理1关于某条直线对称的两个图形是全等形

43定理 2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

48定理四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论任意多边的外角和等于360°

52平行四边形性质定理1平行四边形的对角相等

53平行四边形性质定理2平行四边形的对边相等

54推论夹在两条平行线间的平行线段相等

55平行四边形性质定理3平行四边形的对角线互相平分

56平行四边形判定定理1两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3对角线互相平分的四边形是平行四边形

59平行四边形判定定理4一组对边平行相等的四边形是平行四边形

60矩形性质定理1矩形的四个角都是直角

61矩形性质定理2矩形的对角线相等

62矩形判定定理1有三个角是直角的四边形是矩形

63矩形判定定理2对角线相等的平行四边形是矩形

64菱形性质定理1菱形的四条边都相等

65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1四边都相等的四边形是菱形

68菱形判定定理2对角线互相垂直的平行四边形是菱形

69正方形性质定理1正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1关于中心对称的两个图形是全等的

72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h

83(1)比例的基本性质如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d wc呁/S∕?

84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91相似三角形判定定理1两角对应相等,两三角形相似(ASA)

92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

94判定定理3三边对应成比例,两三角形相似(SSS)

95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97性质定理2相似三角形周长的比等于相似比

98性质定理3相似三角形面积的比等于相似比的平方

99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109定理不在同一直线上的三点确定一个圆。

110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理一条弧所对的圆周角等于它所对的圆心角的一半

117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r�

122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理圆的切线垂直于经过切点的半径

124推论1经过圆心且垂直于切线的直线必经过切点

125推论2经过切点且垂直于切线的直线必经过圆心

126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理弦切角等于它所夹的弧对的圆周角

129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>R+r②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r)�

④两圆内切 d=R-r(R>r)⑤两圆内含d<R-r(R>r)

136定理相交两圆的连心线垂直平分两圆的公*弦

137定理把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长扑愎�剑篖=n兀R/180

145扇形面积公式:S扇形=n兀R^2/360=LR/2

146内公切线长= d-(R-r)外公切线长= d-(R+r)

(还有一些,大家帮补充吧)

实用工具:常用数学公式

公式分类公式表达式

乘法与因式分解

a^2-b^2=(a+b)(a-b)

a^3+b^3=(a+b)(a^2-ab+b^2)

a^3-b^3=(a-b(a^2+ab+b^2)

三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a注:韦达定理

判别式

b^2-4ac=0注:方程有两个相等的实根

b^2-4ac>0注:方程有两个不等的实根�

b^2-4ac<0注:方程没有实根,有*轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA�

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)�

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))�

和差化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B))

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 5

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R注:其中 R表示三角形的外接圆半径

余弦定理 b^2=a^2+c^2-2accosB注:角B是边a和边c的夹角

圆的标准方程(x-a)^2+(y-b)^2=^r2注:(a,b)是圆心坐标

圆的一般方程 x^2+y^2+Dx+Ey+F=0注:D^2+E^2-4F>0

抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py

直棱柱侧面积 S=c*h斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h'正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r>0扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H圆锥体体积公式 V=1/3*pi*r2h�

斜棱柱体积 V=S'L注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s*h圆柱体 V=pi*r2h

重点公式------

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a注:韦达定理

判别式

b2-4ac=0注:方程有两个相等的实根

b2-4ac>0注:方程有两个不等的实根

b2-4ac<0注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R注:其中 R表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB注:角B是边a和边c的夹角

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h'正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r>0扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=S'L注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s*h圆柱体 V=pi*r2h

三、初中数学公式定理大全

你的问题太大了,写一部分

你参考

http://wenku.baidu.com/view/de9f86bff121dd36a32d82be.html

一次方程(组)与一次不等式(组)

1算术解法与代数解法

11两种解法的分析、对比

12未知数和方程

用字母x、y、…等,表示所要求的数量,这些字母称为“未知数”

用运算符号把数或表示书的字母联结而成的式子,叫做代数式

含有未知数的等式,叫做方程

在一个方程中,所含未知数,又成为元;

被“+”、“-”号隔开的每一部分称为一项在一项中,数字或表示已知数的字母因数叫做未知数的系数

某一项所含有的未知数的指数和,成为这一项的次数

不含未知数的项,成为常数项当常数不为零时,它的次数是0,因此常数项也称为零次项

13方程的解与解方程的根据

未知数应取的值是指:把所列方程中的未知数换成这个值以后,就使方程变成一个恒等式

能是方程左右两边的值相等的未知数的值,叫做方程的解,也叫做根

求方程解的过程,叫做解方程

解方程的根据是“运算通性”及“等式性质”

可以“由表及里”地去掉括号,并将“含有相同未知数且含未知数的次数也相同”的各项结合起来,合并在一起——这叫做合并同类项

把方程一边的任一项改变符号后,移到方程的另一边,叫做移项简单说就是“移项变号”

把方程两边各同除以未知数的系数(或同乘以系数的倒数),就得到未知数应取的值

综上所述,得到解方程的方法、步骤:去括号、移项变号、合并同类项,使方程化为最简形式ax=b(a!=0)、除以未知数的系数,得出x=b/a(a!=0)

2一元一次方程

只含有一个未知数并且次数是1的方程,叫做一元一次方程一般形式:ax+b=0(a!=0,a、b是常数)

22一元一次方程的解法

解一元一次方程的一般步骤是:

1去分母(或化为整系数);

2去括号;

3移项变号;

4合并同类项,化为ax=-b(a!=0)的形式;

5方程两边同除以未知数的系数,得出方程的解x=-b/a

好了,文章到这里就结束啦,如果本次分享的初中数学公式定理和初中数学所有公式定理问题对您有所帮助,还望关注下本站哦!

猜你喜欢